
Before IPSec, the internet operated like an open street with no surveillance every packet was visible, traceable, and easy to manipulate. Data moved fast, but it moved naked. Anyone sitting in the right place on the network path could observe, replay, or tamper with traffic. IPSec was created to fix this fundamental flaw at…

Introduction The digital world depends on cryptography that was designed for classical computers. Protocols like RSA, Diffie–Hellman, and elliptic-curve cryptography (ECC) secure everything payments, messaging, software updates, VPNs, authentication.But here’s the uncomfortable truth: a sufficiently powerful quantum computer can break all of them using Shor’s algorithm. This is exactly why post-quantum cryptography exists. PQC…

A Historical Perspective and a Forward-Looking Defense Strategy For decades, modern cryptography has relied on mathematical problems assumed to be computationally infeasible for classical computers. Algorithms like RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC) derive their security from the hardness of factoring large integers or solving discrete logarithms. This design has worked because no…

The rapid progress of quantum computing has forced a major shift in the foundations of modern cybersecurity. Today’s most widely used cryptographic systems — RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC) — were designed under the assumption that certain mathematical problems require an impractical amount of time to solve. Quantum computers break that assumption.…