
How to Migrate Safely and Stay Ahead of Quantum Attacks Quantum computing is not a distant academic fantasy anymore. The moment a sufficiently powerful quantum computer becomes available, a large portion of today’s cryptographic infrastructure will collapse overnight. If your systems are not prepared before that moment, no patch, hotfix, or emergency migration will…

A Critical Look at Noise-Based Security in Quantum-Safe Cryptography Introduction: Security Built on Uncertainty Quantum-safe cryptography was designed to survive a future where quantum computers break today’s public-key systems. To achieve this, many post-quantum schemes rely not on number-theoretic hardness, but on structured randomness, often referred to as noise.At first glance, this sounds elegant:…

Introduction The digital world depends on cryptography that was designed for classical computers. Protocols like RSA, Diffie–Hellman, and elliptic-curve cryptography (ECC) secure everything payments, messaging, software updates, VPNs, authentication.But here’s the uncomfortable truth: a sufficiently powerful quantum computer can break all of them using Shor’s algorithm. This is exactly why post-quantum cryptography exists. PQC…

A Historical Perspective and a Forward-Looking Defense Strategy For decades, modern cryptography has relied on mathematical problems assumed to be computationally infeasible for classical computers. Algorithms like RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC) derive their security from the hardness of factoring large integers or solving discrete logarithms. This design has worked because no…

The rapid progress of quantum computing has forced a major shift in the foundations of modern cybersecurity. Today’s most widely used cryptographic systems — RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC) — were designed under the assumption that certain mathematical problems require an impractical amount of time to solve. Quantum computers break that assumption.…