
How to Migrate Safely and Stay Ahead of Quantum Attacks Quantum computing is not a distant academic fantasy anymore. The moment a sufficiently powerful quantum computer becomes available, a large portion of today’s cryptographic infrastructure will collapse overnight. If your systems are not prepared before that moment, no patch, hotfix, or emergency migration will…

Quantum computing isn’t a “future trend” anymore; it’s a structural shift in how we will write software, design algorithms, and think about computation itself. As quantum hardware slowly crosses the boundary from lab prototypes to early commercial machines, programmers are being pushed toward a new mindset one where uncertainty, superposition, and probabilistic outcomes are…

Introduction The digital world depends on cryptography that was designed for classical computers. Protocols like RSA, Diffie–Hellman, and elliptic-curve cryptography (ECC) secure everything payments, messaging, software updates, VPNs, authentication.But here’s the uncomfortable truth: a sufficiently powerful quantum computer can break all of them using Shor’s algorithm. This is exactly why post-quantum cryptography exists. PQC…

A Historical Perspective and a Forward-Looking Defense Strategy For decades, modern cryptography has relied on mathematical problems assumed to be computationally infeasible for classical computers. Algorithms like RSA, Diffie-Hellman, and Elliptic Curve Cryptography (ECC) derive their security from the hardness of factoring large integers or solving discrete logarithms. This design has worked because no…

For the past decade, trust on the internet has been built on code. Cryptocurrencies, blockchains, and zero-knowledge proofs all rely on the hardness of certain mathematical problems. If you can’t solve them, you can’t cheat. But this foundation has a weakness: it assumes computing power grows slowly and predictably. Quantum computing breaks that assumption.…